Identification and Functional Assessment of Age-Dependent Truncations to Cx46 and Cx50 in the Human Lens
نویسندگان
چکیده
Purpose Many proteins in the lens undergo extensive posttranslational modifications (PTMs) with age, leading to alterations in their function. The extent to which lens gap junction proteins, Cx46 and Cx50, accumulate PTMs with aging is not known. In this study, we identified truncations in Cx46 and Cx50 in the human lens using mass spectrometry. We also examined the effect of truncations on channel function using electrophysiological measurements. Methods Human lenses were dissected into cortex, outer nucleus, and nucleus regions, and fiber cell membranes were subjected to trypsin digestion. Tryptic peptides were analyzed by liquid chromatography (LC)-electrospray tandem mass spectrometry (ESI/MS/MS). Effects of truncations on channel conductance, permeability, and gating were assessed in transfected cells. Results Cleavage sites were identified in the C-terminus, the cytoplasmic loop, and the N-terminus of Cx46 and Cx50. Levels of C-terminal truncations, which were found at residues 238 to 251 in Cx46 and at residues 238 to 253 and 274 to 284 in Cx50, were similar in different lens regions. In contrast, levels of truncations in cytoplasmic loop and N-terminal domains of Cx46 and Cx50 increased dramatically from outer cortex to nucleus. Most of the C-terminally truncated proteins were functional, whereas truncations in the cytoplasmic loop did not result in the formation of functional channels. Conclusions Accumulation of cytoplasmic loop and N-terminal truncations in the core might lead to decreases in coupling with age. This reduction is expected to lead to an increase in intracellular calcium and a decrease in levels of glutathione in the nucleus. These changes may ultimately lead to age-related nuclear cataracts.
منابع مشابه
Optimal lens epithelial cell proliferation is dependent on the connexin isoform providing gap junctional coupling.
PURPOSE Gap junctions between epithelial cells are essential for normal lens growth. In mice, knockout of Cx50 or targeted replacement of Cx50 with Cx46 (knockin) caused smaller lenses because of decreased epithelial cell proliferation. However, it remains unclear whether Cx50 functionally contributes to lens epithelial coupling during maximal proliferation on postnatal day 2 (P2) and P3. To de...
متن کاملSelective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins
Gap junctions are collections of intercellular channels composed of structural proteins called connexins (Cx). We have examined the functional interactions of the three rodent connexins present in the lens, Cx43, Cx46, and Cx50, by expressing them in paired Xenopus oocytes. Homotypic channels containing Cx43, Cx46, or Cx50 all developed high conductance. heterotypic channels composed of Cx46 pa...
متن کاملTargeted Ablation of Connexin50 in Mice Results in Microphthalmia and Zonular Pulverulent Cataracts
In the ocular lens, gap junctional communication is a key component of homeostatic mechanisms preventing cataract formation. Gap junctions in rodent lens fibers contain two known intercellular channel-forming proteins, connexin50 (Cx50) and Cx46. Since targeted ablation of Cx46 has been shown to cause senile-type nuclear opacities, it appears that Cx50 alone cannot meet homeostatic requirements...
متن کاملKnock-in of Cx46 partially rescues fiber defects in lenses lacking Cx50
PURPOSE Connexins 46 (Cx46) and 50 (Cx50) support lens development and homeostasis. Knockout (KO) of Cx50, but not Cx46, causes defects in lens fiber organization, F-actin enrichment, gap junction (GJ) size, ball-and-socket (BS) maturation, and GJ-associated protein distributions. To further determine the unique roles of Cx50 and Cx46, we investigated whether these defects persisted in Cx46 kno...
متن کاملCataracts and Microphthalmia Caused by a Gja8 Mutation in Extracellular Loop 2
The mouse semi-dominant Nm2249 mutation displays variable cataracts in heterozygous mice and smaller lenses with severe cataracts in homozygous mice. This mutation is caused by a Gja8(R205G) point mutation in the second extracellular loop of the Cx50 (or α8 connexin) protein. Immunohistological data reveal that Cx50-R205G mutant proteins and endogenous wild-type Cx46 (or α3 connexin) proteins f...
متن کامل